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Abnormal effect of Gn2SO4 as compared to other guanidinium
salts on rates and stereoselectivities of Diels–Alder reactions
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Abstract—An abnormal effect in that guanidinium sulphate increases the rates and endo product formation of the reaction of
cyclopentadiene with methyl acrylate is recorded for the first time in Diels–Alder chemistry. Other guanidinium salts like chloride,
bromide, acetate and perchlorate inhibit the reaction rates and give rise to more exo products. This contrasting effect of Gn2SO4

on the kinetics of the Diels–Alder reaction can be attributed to the dominant role of SO4
2− over the guanidinium cation. © 2001

Elsevier Science Ltd. All rights reserved.

Salt solutions have pronounced influences on rates and
stereoselectivities of Diels–Alder reactions.1 Special
effects of water, aqueous LiCl, LiClO4 and guanidinium
chloride (GnCl) have been demonstrated by Breslow
and co-workers.2 The rate-enhancing effect in aqueous
LiCl can be ascribed to salting-out phenomena, while
the rate-inhibiting effects with LiClO4 and GnCl to
salting-in.3,4 During our continued efforts to delineate
the forces responsible for the salt effect on the kinetics
of Diels–Alder reactions,1 we encountered some inter-
esting kinetic results for the reaction of cyclopentadiene
with methyl acrylate in the presence of several guani-

dinium salts. In this work, we show, for the first time,
that guanidinium sulphate, Gn2SO4 accelerates the
reaction rate of the above reaction contrary to other
guanidinium salts like GnBr, CH3COOGn, GnClO4,
which reduce it. In general, it is assumed that the
guanidinium salts inhibit the rates and endo products
of Diels–Alder reactions.1–4

We measured5 the reaction rates and stereoselectivities
for the reaction of cyclopentadiene with methyl acrylate
in aqueous GnCl, GnBr, CH3COOGn, GnClO4 and
Gn2SO4. In Fig. 1(a), we plot the concentration depen-

Figure 1. (a) Dependence of the rate constants, k2 (M−1 s−1) on the salt concentration for the reaction of cyclopentadiene with
methyl acrylate in aqueous Gn2SO4 (�), CH3COOGn (�), GnCl (�), GnBr (�) and GnClO4 (�); (b) endo (%) versus salt
concentration for the reaction in the guanidinium salts, symbols are defined in Fig. 1(a).
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dence of the rate constants, k2 in the presence of
different guanidinium salts. Similarly, the variation of
endo products with the salt concentration is shown in
Fig. 1(b). Data were also collected for Na2SO4 with a
view to check the role of the SO4

2− species. An exami-
nation of the rate constants, k2 versus salt concentra-
tion [salt] plotted in Fig. 1(a) shows a decrease in the
rate constants with respect to the salt concentration of
GnCl, GnBr, CH3COOGn and GnClO4. For example,
CH3COOGn, GnCl, GnBr and GnClO4 at 2 M salt
concentration decrease the reaction rates by 44, 56, 63
and 84%, respectively. Thus, the order in which these
guanidinium salts affect the progress of the reaction is
CH3COOGn<GnCl<GnBr<GnClO4. This is also true
for the presence of endo products obtained for this
reaction. For example, at 1 M salt solution, the amount
of endo product is decreased by 7, 13, 16 and 21% in
aqueous CH3COOGn, GnCl, GnBr and GnClO4,
respectively, as compared to that in water alone.

The most important point of this investigation is the
effect of Gn2SO4, which enhances both the reaction
rates and the amount of endo products. A 56% increase
in the rate constant, k2 at 2 M of Gn2SO4 is noted with
respect to that in pure water. Similarly, the endo prod-
ucts are enhanced to 81.5% at 2 M of Gn2SO4, as
compared to 66.6% obtained in pure water. The behav-
ior of the guanidinium salts with different anions seems
very interesting, particularly when Gn2SO4 displays
opposite effects from those shown by GnCl, GnBr,
CH3COOGn and GnClO4. The associated anions of the
guanidinium cation i.e. Cl−, Br−, CH3COO− and ClO4

−

ions are seen to offer more exo product. However,
Gn2SO4 reverses this trend by yielding more endo prod-
ucts. Since the guanidinium cation is a common cation
in all the salts, this effect is expected to emerge due to
anions. The variations in the reaction rates and endo
products can be attributed to the salting-out (S-O) and
salting-in (S-I) phenomena.6 From this argument GnCl,
GnBr, CH3COOGn and GnClO4 act as S-I agents,
while Gn2SO4 acts as an S-O one. The guanidinium
salts with SCN−, Cl− and CH3COO− ions are known to
be potential destabilizers of tertiary structures of
proteins. On the other hand, Gn2SO4 was noted to
enhance the transition temperature of proteins, thus
acting as a stabilizer unlike other guanidinium salts.7

The SO4
2− ion in aqueous solution is known to be an

S-O species.8 Thus, a strong salting-out anion, such as
SO4

−2 will over compensate the S-I tendency of the
guanidinium ion thereby leading to a positive effect on
rates and endo products in Gn2SO4. The salting-coeffi-
cient computed from the scaled particle theory4,9 for
Gn2SO4 is 0.239 (S-O agent) as compared to −0.265,
−0.321, −0.095 and −0.383 for GnCl, GnBr,
CH3COOGn and GnClO4, respectively (all S-I agents).
Solubility measurements of methyl acrylate, for exam-
ple in aqueous guanidinium salts, support the above
finding. In Fig. 2, we plot the relative solubilities of
methyl acrylate (S/So)MA, (S and So are the solubilities
of methyl acrylate in the salt solution and water,
respectively) in aqueous CH3COOGn, GnCl, GnBr,
GnClO4 and Gn2SO4 solutions. It is noted from Fig. 2
that CH3COOGn, GnCl, GnBr and GnClO4 increase

Figure 2. The relative solubilities of methyl acrylate, (S/
So)MA in guanidinium salts; symbols are the same as in Fig.
1(a).

the solubility of methyl acrylate in up to 2 M salt
solutions indicating the S-I behavior of these salts. The
(S/So)MA values are weakly altered by CH3COOGn.
The decrease in the solubility of MA in Gn2SO4 clearly
indicates the S-O phenomena governing the rate
acceleration.

In addition, the partial volume and compressibility10 of
these salts also indicate that Gn2SO4 is a salting-out
agent, while other guanidinium salts are salting-in ones.

In summary, it can be stated that Gn2SO4 enhances the
rates and endo products formation, while other guani-
dinium salts inhibit the rates and offer more exo
product for the reaction of cyclopentadiene with methyl
acrylate. The anion with which the guanidinium cation
forms a salt determines the course of the rates and
stereoselectivities.
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